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An optimization-based assessment framework for
biomass-to-fuel conversion strategies†
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We develop a framework for the identification and evaluation of biomass-to-fuel production strategies.

We generate a technology superstructure that consists of a wide range of conversion technologies along

with the corresponding feedstocks, intermediates, and final products. The superstructure includes both

known technologies as well as technologies that can be developed based on results available in the

literature. Technical (yields and energy requirements) and economic (production cost) parameters, for

both existing and potential new technologies, are calculated from the literature or estimated using a

systematic approach. The superstructure along with the associated data is used to develop optimization

models which allow us to identify and evaluate new and existing biofuel strategies as well as to

perform sensitivity analyses and identify the major cost drivers of these strategies. The proposed

framework can be used to study a range of interesting questions: What is the best strategy for the

production of a specific fuel? What is the best utilization strategy for a specific feedstock? We illustrate

our methodology using the production of ethanol from hard woody biomass as a case study.
Broader context

While advances in fundamental research have resulted in the development of large number of biomass-to-fuel processing and conversion technologies, it is still
unclear what mix of products would make biofuel production economically viable; and even for a given set of nal products, it is unknown which chemistries
and what types of conversion technologies should be integrated and how. Accordingly, to speed the development of a competitive, integrated biorenery, we
develop a system-level methodology for the synthesis and evaluation of a wide range of biomass-to-fuel strategies. In particular, we generate a biomass utilization

superstructure (BUS) which consists of a wide range of conversion technologies along with the corresponding feedstocks, intermediates, and nal products; and
we develop optimization models for the evaluation of the embedded strategies using alternative criteria. Our framework establishes a methodology and suite of
tools for the systematic comparison of biofuel strategies, the identication of the major technology gaps and cost drivers, and the assessment of the impact of
technology uncertainty.
1 Introduction

Currently, most chemicals and energy carriers are derived from
fossil fuels.1 The demand for transportation fuels, which
accounts for nearly 25% of the total net primary energy and 70%
of the energy provided by petroleum,2 is expected to increase,
while oil prices are also expected to remain high due to strong
demand in the developing world. To meet this challenge, it is
necessary to increase energy supplies through the development
of renewable and alternative energy sources. Biomass, the only
renewable source of carbon-based fuels, offers promising
alternatives to satisfy energy demand while reducing the envi-
ronmental impact.3,4 Furthermore, biomass resources are
widely abundant.5 In the last few decades, many technologies
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have been developed to produce biomass-derived chemicals6–8

and fuels9–15 through the formation of platform chemicals16,17

(see Huber et al.18 for a review).
A large number of studies focuses on the economic assess-

ment of biomass-to-fuel strategies that rely on biochemical,19–24

catalytic25,26 or thermochemical (pyrolysis27,28 and gasica-
tion29–32) technologies utilizing a range of biomass alternatives33

including energy crops34 and biomass wastes.35–38 Also,
researchers have explored improvements via the optimization
of energy39 and water consumption,40 and waste treatment
systems,41 as well as the integration of new strategies with
existing infrastructure.42,43 It is envisioned that the conversion
of biomass to fuels, chemicals and power will take place in an
integrated facility, the biorenery.44–46 Several review papers on
the design and analysis of bioreneries are available in the
literature.1,47,48 Finally, a number of studies, primarily in the
eld of industrial ecology, focus on the analysis of the environ-
mental impact of biofuel strategies.49–53

Despite the large number of system-level analyses in the
literature, there are limited methods available for (i) the
Energy Environ. Sci., 2013, 6, 1093–1104 | 1093



Fig. 2 (a) Breakdown of a production system into a series of technologies and
(b) systematic generation of new technologies and compounds utilizing different
feedstocks.

Table 1 Major technology groups in each category; number of technologies in
each group in parentheses

Category Technology groupa

Mechanical/
physical

Handling and drying (9), milling and
shredding (6), liquefaction (2), syngas,
conditioning (4), distillation (22),
pervaporation (18), residue separation (12),
residue treating (2), residue upgrading (1),
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identication (and assessment) of new biofuel production
strategies, and (ii) the simultaneous assessment and compar-
ison of alternative strategies. Most technology assessment
studies in the literature focus on specic systems, i.e., systems
with a specied feedstock, series of conversions, and nal
products. Accordingly, the goal of this paper is the development
of a systematic framework for the identication and assessment
of biofuel strategies, which can be used to study a wide range of
questions. In developing this framework, we rst generate a
biomass utilization superstructure (BUS), which includes more
than 170 technologies and 120 compounds (Section 2). Second,
we evaluate technical and economic parameters for the tech-
nologies; parameters for existing technologies are obtained
from the literature, whereas those for new technologies are
estimated based on similar existing technologies (Section 3).
Third, we develop network optimization (linear programming
and mixed-integer programming) models for the underlying
superstructure (Section 4). Based on these models, we discuss
methods to generate alternative strategies, identify bottlenecks
and technology gaps, and perform sensitivity analyses (Section
5). Finally, in Section 6, we use our framework to study the
production of ethanol from hard woody biomass.

2 Biomass utilization superstructure
2.1 Technologies

Biomass can be converted to fuels, fuel additives, and chemicals
via multiple production strategies, where each strategy starts
from a biomass feedstock and through a series of conversion
technologies leads to the production of one or more targeted
fuel(s). We develop a technology superstructure that consists of
all major conversion technologies and the corresponding
compounds, thus embedding all potential strategies. To
simplify the representation, we group similar technologies into
technology groups, as shown in Fig. 1.

To generate the superstructure, we performed an extensive
review of the literature. In some cases, research papers
describing a single conversion technology were used while in
other cases we studied papers that describe integrated
production systems. In the latter case, we divided the known
systems into a series of technologies. For instance, the
production of ethanol from corn stover is decomposed into three
technologies, dilute acid pretreatment, enzymatic simultaneous
saccharication and fermentation (SSF), and distillation with two
Fig. 1 Technology groups (for superstructure representation) and technologies.
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corresponding intermediates, hydrolyzate and broth as shown
in Fig. 2a.

It is important to stress here that each technology does not
correspond to a single operation. For example, dilute acid
pretreatment (DAPcs) includes four operations: (i) shredding
and washing, (ii) prehydrolysis, (iii) S/L separation, and (iv)
overliming and neutralization (see Fig. 2a). Thus, although
each technology is treated as a block, the calculation of
its technical and economic parameters is based, as we
discuss in Section 3, on detailed modeling of the individual
operations comprising a technology, the intra-technology
streams, and the corresponding operational costs (including
hydrolyzate conditioning (12), extraction (1)
Biochemical Acidic fermentation (10), SSF (12)
Chemical Dilute acid pretreatment (5), hot water

pretreatment (5), AFEX pretreatment (5),
hydrolysis (10), acidic treatment (6),
syngas production (4), MeOH synthesis (2),
acetic acid production (1), MTG process (1),
hydrogenation (1), glycerol upgrading (1),
FT synthesis (1), hydrogen production (3),
hydrocracking (1), esterication (1)

Thermochemical Gasication (10), pyrolysis (5),
power generation (14)

a AFEX: ammonia ber expansion, FT: Fischer–Tropsch, MeOH:
methanol, MTG: methanol to gasoline, SSF: simultaneous
saccharication and fermentation.

This journal is ª The Royal Society of Chemistry 2013



Table 2 Major compound groups in each compound category; number of
compounds in each group in parentheses

Category Compound groupa

Feedstock
(biomass)

Soybean (1), corn (1), sugarcane (1), bagasse (1),
corn stover (1), hard wood (1), so wood (1),
switch grass (1)

Intermediate Chopped particle (5), slurry (24), hydrolyzate (12),
triglycerides (1), broth (24), glycerol (1), chopped
dry corn (1), steeped wet corn (1), glycerol (1),
cane juice (1), levulinic acid (1), syngas (2),
methanol (1), GVL (1), raw acetic acid (1),
bio-oil (7), butene (1), solid (16)

Final product
(biofuels)

Gasoline (1), diesel (1), bio-diesel (1), FT-fuels (1),
ethanol (1), butanol (1), DBK (1), SNG (1),
hydrogen (1), ethyl levulinate (1), fuel additives (1),
mixed alcohol (1)

By-product Electricity (1), DDGS (1), gluten (1), xylose (1),
formic acid (1), acetic acid (1)

a DBK: 5-nonanone; DDGS: dried grains with soluble; FT: Fischer–
Tropsch; GVL: g-valerolactone; SNG: synthesized natural gas.

Fig. 3 Biomass utilization superstructure; representation based on technology and c
pretreatment, APR: aqueous phase reforming, CAT: catalytic conversion technolog
dilute acid, D&F: drying and filtering, FT: Fischer–Tropsch, HW: hot water, HYDRO: h
handling and milling, H&S: handling and steeping, ID indirect, LIQ and SACC: liq
oligomerization, SEP: separation, SR: steam reforming, SSF: simultaneous saccharifi
acetic acid, AL: alkanes, B: butanol, BM: biomass, BN: butene, BO: bio-oil, C: corn, CB:
ethanol, EL: ethyl levulinate, FA: fuel additives, GVL: g-valerolactone, LA: levulinic ac
butanol and pentanol), RS: raw syngas, SB: soybean, SC: sugarcane, SNG: synthesize

This journal is ª The Royal Society of Chemistry 2013
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utility, wastewater, and material costs). An example illus-
trating the development of technology models is presented in
the ESI.†

If alternative feedstocks are used, then the composition of
the compounds and the yields will be different, so new tech-
nologies and compounds should be introduced. For example,
we generate two alternative technologies, DAPhw and DAPsg,
which utilize hard wood and switch grass feedstocks, respec-
tively, based on the existing technology utilizing corn stover. In
this case, intermediate compounds Hydrohw and Hydrosg are
also generated for the new technologies (see Fig. 2b).

We classify technologies into four categories according to
their processing characteristics:54

� Mechanical/physical: a compound is separated or its size is
reduced without changes in its chemical structure.

� Biochemical: microorganisms or enzymes are used for the
conversion.

� Chemical: a compound is transformed at mild pressure and
temperature.
ompound groups. Technologies. AC: acidic, AFEX: ammonia fiber expansion based
y, CHP: combined heat and power generation, CON: conditioning, D: direct, DA:
ydrogenation, H&C: handling and chopping, H&E: handling and extraction, H&M:
uefaction and saccharification, MTG: methanol to gasoline technology, OLIGO:
cation and fermentation, SYN: chemical synthesis technology. Compounds. AA:
crude bio-oil, DBK: dibutyl ketone, DC: dry corn, DDGS: dried grains with soluble, E:
id, LH: lignin and humans, M: methanol, MA: mixed alcohols (ethanol, propanol,
d natural gas, TAR: tar residue, WC: wet corn.

Energy Environ. Sci., 2013, 6, 1093–1104 | 1095
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� Thermochemical: extreme temperature and pressure
conditions are used for the conversion.

Table 1 shows the major technology groups of each category
and the number of technologies included in each technology
group.
2.2 Compounds

Compounds are classied into four categories; biomass feed-
stocks, intermediates, nal products (fuels or fuel additives)
and by-products. Feedstock composition varies regionally, while
the composition of intermediates and nal products depends
on the technology they are produced from and the composition
of the input compound. Compounds are also grouped into
compound groups, as shown in Table 2. The BUS includes 8
feedstocks, 18 compound groups for intermediates, 6 by-prod-
ucts, and 12 nal products. Note that we also consider
compounds which can be upgraded (blended) to value-added
fuels such as ethyl levulinate.
Fig. 4 Procedure for evaluation of technical and economic parameters for (a)
existing and (b) new technologies; dark boxes denote evaluation tasks, light
boxes represent parameters.
2.3 Biomass utilization superstructure generation

Based on an extensive search of the literature and the systematic
generation of alternative technologies described in subsection
2.1, we formulated a superstructure that consists of 172 tech-
nologies and 125 compounds. A complete technology list is
given in the ESI,† along with the references that were used to
evaluate the associated parameters. Fig. 3 shows the same
superstructure represented using technology and compound
groups. Note that feedstocks can be converted to fuels in
multiple ways and, in general, a fuel can be produced by
multiple feedstocks. For example, the compound group hydro-
lyzate (which can be produced from different feedstocks
through different pretreatment technologies) can be used to
produce ethanol through a combination of hydrolysis and
fermentation or it can be used to produce liquid hydrocarbon
fuels through catalytic conversion technologies.
3 Parameter evaluation

The methodology for evaluating technical and economic
parameters for existing and new technologies is outlined in
Fig. 4.
3.1 Existing technologies

3.1.1 Technical parameters. As discussed in subsection 2.1,
a detailed process model was developed for each technology in
order to calculate two key parameters, the product yield(s) (the
mass ratio of product over primary reactant) and energy
requirement (kW per unit processing rate), which are then used
to develop a simple block technology model in the superstruc-
ture. The detailed models used for the calculation of these
parameters consider the consumption of auxiliary inputs, such
as makeup water, enzymes, solvents and catalysts, as well as the
consumption of utilities. However, since auxiliary inputs do not
appear as compounds in the nal superstructure, they are not
included in the calculation of yields. The generation of detailed
1096 | Energy Environ. Sci., 2013, 6, 1093–1104
technology models based on the literature is illustrated in the
ESI† through an example.

3.1.2 Economic parameters. The main economic param-
eter is the unit production cost, which has capital and operating
cost components. The capital cost consists of direct costs,
which include equipment, installation, piping and instrumen-
tation costs, and indirect costs, which include engineering and
construction costs, fees and tax, and project contingency costs.
Based on sizing and costing data, direct costs are estimated
using the installation factors given in Table S7 of the ESI† and
the total capital cost is estimated using the project investment
factors given in Table S8.† To compare the economics of
different strategies accurately, we adjust the capacity of all
technologies. Specically, we consider capacities that would be
suitable for a plant that processes 2000 dry tons of biomass per
day based on benchmark reports in the literature.55 In other
words, the rst technology in a strategy utilizes 2000 dry tons of
biomass per day as input and the capacities of the following
technologies are modied accordingly. The capacity-adjusted
capital cost, Cp, is estimated using a power-law expression,

Cp ¼ Cpo(Q/Qo)
a (1)
This journal is ª The Royal Society of Chemistry 2013



Fig. 5 Yield estimation of a new technology from component-based conversion coefficients of an existing technology.
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where Cpo is the capital cost of the baseline design, Q is the
adjusted capacity, Qo is the capacity of the baseline design and a
is the scaling exponent, which is assumed to be 0.67.22
Table 3 Technical and economic parameter ranges for the major technology grou

Reactant Product

Mechanical/physical
Handling and drying Lignocellulosic Dried BM
Milling and shredder Lignocellulosic Shredded B
Liquefaction Corn powder, slurry Liqueed m
Syngas conditioning Raw syngas Syngas
Distillation Broth, fermented mash Ethanol
Pervaporation Broth, fermented mash Ethanol
Residue separation Residue Lignin
Residue treating Residue DDGS
Residue upgrading Residue Raw bio-oi
Hydrolyzate conditioning Hydrolyzate Treated so
Extraction Soybean Triglycerid

Biochemical
Fermentation Liqueed mash Broth
Enzymatic SSF Hydrolyzate Broth

Thermochemical
Gasication Dried biomass Raw synga
Pyrolysis Dried biomass Raw bio-oi
Power generationb Residue Electricity

Chemical
Dilute acid pretreatment Lignocellulosic Hydrolyzat
Hot water pretreatment Lignocellulosic Hydrolyzat
AFEX pretreatment Lignocellulosic Hydrolyzat
LA-hydrolysis Lignocellulosic Levulinic a
Acidic treatment Hydrolyzate Acidic slur
Syngas production Raw syngas Syngas
MeOH synthesis Syngas Methanol
AA production Methanol Acetic acid
MTG processc Methanol Gasoline

Diesel
Hydrogenation Acetic acid Ethanol
Glycerol upgradingc Glycerol Gasoline

Diesel
FT synthesisc Syngas Gasoline

Diesel
H2 production Syngas, bio-oil Hydrogen
Hydrocrackingc Bio-oil Gasoline

Diesel
Esterication Triglyceride Crude biod

a Abbreviations given in Fig. 3. b The units of yield and production cost a
c The costs are calculated based on the main product (e.g., gasoline).

This journal is ª The Royal Society of Chemistry 2013
The amortized capital cost, ACC, is then calculated with
time-value adjustment,

ACC ¼ 3 � CCF � Cp (2)
psa

Yield
Production cost
($ per kg)

Energy requirement
(kW h kg�1)

0.54–0.80 0.01–0.03 <0.01
M 0.67–1.16 <0.01 0.02–11.98
ash 1.59–2.67 0.01 <0.01

0.55–0.63 0.05–0.07 0.01–0.07
0.01–0.11 0.09–0.36 <0.01
0.02–0.05 0.20–0.46 656.7–983.3
0.63–0.71 <0.01 <0.01
0.04–0.14 0.14–0.44 8.87–21.40

l 0.25–0.27 0.15 944.20
lid 0.98–1.02 <0.01 1.01–1.24
e 1.05 0.01 <0.01

0.56–1.11 <0.01 0.01–0.02
0.95–1.03 <0.01 12.05–37.48

s 0.84–1.19 0.02–0.03 0.06–0.08
l 0.75–0.77 0.02–0.03 1.74–1.83

0.25–1.93 0.05–0.09 144.6–245.4

e 3.12–3.24 0.01–0.02 61.52–94.84
e 4.08–4.24 0.01 89.11–109.33
e 3.39–3.41 0.01 52.39–68.02
cid 0.12–0.15 0.01 0.08–0.10
ry 0.98–1.02 <0.01 1.01–1.25

0.54–0.63 0.05–11.22 0.02–0.07
0.86–0.93 0.04–0.07 0.02–0.06
1.81 0.19 0.015
0.32 0.25 0.21
0.12
0.76 0.26 <0.01
0.20 0.01 0.27
0.06
0.13 0.46 0.67
0.05
0.02–0.07 0.53–8.97 0.59–21.40
0.41 0.16 132.80
0.18

iesel 1.1 0.02 <0.01

re given in terms of kW h kg�1 of reactant and $ per kW h, respectively.

Energy Environ. Sci., 2013, 6, 1093–1104 | 1097



Fig. 6 Production cost uncertainty based on technology maturity and complexity.56,57
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where 3 is the time-value adjustment factor, and CCF is the
capital charge factor,

CCF ¼ rð1þ rÞn
ð1þ rÞn � 1

(3)

where r is the interest rate and n is the lifetime of the plant,
which are 10% and 20 years, respectively; thus the CCF is
0.1175.

The operating cost (OC) consists of xed and variable costs.
The xed operating cost includes labor charges, overhead,
maintenance, and general and administration costs; these sub-
items are assumed to be a percentage of the capital cost as
shown in Table S9 of the ESI.† The variable operating cost
accounts for auxiliary inputs and utilities including steam and
electricity as well as waste treatment costs. The reference year is
2007 (see Table S10 of the ESI† for the time-value index factor).

Finally, the unit production cost (UPC) of a technology is
calculated based on the capital and operating costs as well as
the annual production rate (APR) of that technology,

UPC ¼ ACCþOC

APR
(4)

The detailed methods for the calculation of UPC are
described in the ESI.†
3.2 New technologies

3.2.1 Technical parameters. The yields of new technologies
are estimated using component-based conversion coefficients
of existing technologies, as shown in Fig. 5. For instance,
technology T1 converts 1 kg of F1, consisting of components a
and b, to 0.4 kg of P1. Based on the conversion coefficients of
components a and b (for conversions a / c and b / d), we
calculate the yield of new technology T1-a with feed F2. In other
words, the yield of a new technology is estimated based on the
composition of the input compound. The feedstock composi-
tions considered in this study are given in Tables S11 and S12 in
the ESI.†

3.2.2 Economic parameters. The capital cost, Cn, of a new
technology is,

Cn ¼ Cp(Rn/Rp)
a (5)

where Cp is the capital cost of the existing technology, Rp is the
amount of reactant in the existing technology, and Rn is the
1098 | Energy Environ. Sci., 2013, 6, 1093–1104
amount of reactant in the new technology. Similarly, operating
costs are estimated based on the mass ratio of the reactants in
the new and existing technologies (Rn/Rp), assuming that the
consumptions of energy and auxiliary materials are generally
proportional to the amount of feed. Ranges for the technical
and economic parameters for the major technology groups are
shown in Table 3.
3.3 Technology uncertainty

While we have tried to estimate production costs for industrial
scale production accurately, there is still a signicant amount of
uncertainty in the projected production cost of most technolo-
gies in the BUS, since most of them are still in their infancy. In
general, the level of uncertainty depends on the maturity and
complexity of a technology, as well as the quality of information
we found in the literature.27 To address this shortcoming, we
quantied the uncertainty in production cost based on the
following indicators:

� Process maturity: we consider three levels: basic research,
development, and demonstration; technologies at a later stage
have lower uncertainty.

� Process complexity: we consider three levels: low, moderate,
and high; a higher level results in higher uncertainty.

Based on these indicators, each technology is assigned an
uncertainty level (see Fig. 6). We use three levels: low (10%),
intermediate (30%) and high (50%). In Section 5, we show
how these levels can be used for the analysis and comparison
of different strategies. Note that the uncertainty we
consider here is in addition to the uncertainty that is typically
considered through the addition of contingencies to the indi-
rect cost.
4 Optimization models

To identify promising strategies, we develop a linear
programming (LP) model based on the network representation
of the BUS and the parameters we evaluate. Technologies and
compounds are represented as nodes; consumption and
production of compounds by technologies, as well as
feedstock purchases and nal product sales, are represented as
arc ows58 (see Fig. 7). We use uppercase bold letters to
represent sets, lowercase italics for set indices, uppercase
italics for variables, and lowercase Greek characters for
parameters.
This journal is ª The Royal Society of Chemistry 2013



Fig. 7 Representation of the network-based model.
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The model consists of:
(i) A set of compounds, i ˛ I; IF, II, IP and IB are the subsets of

feedstocks, intermediates, products, and by-products, respec-
tively; li, 4i, gi, di, and ui are the compound price, heating value,
minimum purchase and availability (for feedstocks), and
demand (for products), respectively.

(ii) A set of technologies, j ˛ J, with capacity bj; J
+
i and J�i are

the subsets of the technologies that produce and consume,
respectively, compound i; rj, and yj are the unit production cost
and unit energy requirement, respectively; and hij is the yield of
compound i in technology j (hij < 0 for inputs and hij > 0 for
outputs).

We introduce three nonnegative continuous variables:
(i) Xj: production level of technology j.
(ii) Pi: amount of feedstock, i ˛ IF, purchased.
(iii) Si: amount of product/by-product, i ˛ IPWIB, sold.
Compound material balance: the purchases and production

(incoming ows) of a compound should be equal to its sales and
consumption (outgoing ows):

Piþ
X
j˛Jþ

i

hij Xj ¼ Si �
X
j˛J�i

hij Xj ; ci (6)

Technology capacity: the production level of each technology
is bounded by its capacity:

Xj # bj, cj (7)

Demand satisfaction: demands for nal products should be
satised:

Si $ ui, ci ˛ IP (8)

Feedstock availability and minimum purchase: feedstock
purchase is upper bounded by its availability and lower boun-
ded by a minimum purchase amount:

gi # Pi # di, ci ˛ IF (9)

Eqns (6) and (7) are common constraints in all LP models,
while the inequalities in eqns (8) and (9) are selectively used
according to the type of question we seek to address. For
This journal is ª The Royal Society of Chemistry 2013
example, the minimum purchase inequality in eqn (9) is used in
problems where our goal is to identify strategies utilizing a
specic feedstock.

Strategy evaluation can be performed using various criteria.
For example, the objective function in eqn (10) seeks the
strategy that leads to the minimum production cost (for the
production of a xed amount of a targeted fuel),

min Z1 ¼
X
i˛IF

li Pi þ
X
j

rjXj �
X
i˛IB

li Si (10)

If our goal is to nd the strategy with the minimum energy
consumption (for the production of a xed amount of a targeted
fuel), then we use the following objective function:

min Z2 ¼
X
j

yj Xj (11)

Finally, the strategy that leads to the maximum prot can be
expressed as follows,

max Z3 ¼
X

i˛IPWIB

li Si �
X
i˛IF

li Pi �
X
j

rj Xj (12)

Other objective functions that can be used include the
maximization of fuel production (from a given amount of a
specied feedstock) and the minimization of environmental
impact as well as other life cycle assessment metrics.
5 Strategy identification and analysis

Using the equations of the previous section, we can formulate
different optimization models to address different types of
questions. For example, we can formulate models to nd
different strategies for the production of a specic fuel, or
strategies that are based on a specic feedstock. This is
accomplished by carefully selecting the equations included in
the LP model and the corresponding parameters. Also, for each
type of question, we can use different assessment criteria (i.e.,
objective functions). In the next subsections, we present a few
examples, but we stress that our framework can be used as the
basis for the formulation of multiple models to address a large
Energy Environ. Sci., 2013, 6, 1093–1104 | 1099
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number of questions. A model is denoted byMqc, where q is the
type of question and c the assessment criterion.

5.1 Identication of the optimal strategy

5.1.1 Question 1: optimal production strategy for a given
product. The rst question we consider is the identication of
the optimal strategy for the production of a specic product, i0 ˛
IP. This includes the selection of the feedstock to be used as well
as the technologies to be employed. To address this question,
we formulate a model where the demand of fuel i0 is equal to 1,
all other fuels have zero demand, and the availability of all
feedstocks is unlimited, so that all strategies can be chosen. If
the assessment is based on the minimization of cost (objective
Z1), then we formulate model M11: min {Z1: eqns (6)–(9), with
ui0 ¼ 1; ui ¼ 0 if IP H is i0; gi ¼ 0, di ¼M,ci ˛ IF}, whereM is a
sufficiently large number.

The solution of M11 yields feedstock purchase, Pi, and tech-
nology production levels, Xj, from which we can construct the
optimal strategy.

5.1.2 Question 2: optimal utilization strategy for a given
feedstock. In this case, we want to identify the best way to utilize
a specic feedstock, i0 0 ˛ IF. We formulate a model that requires
that one unit of feedstock i0 0 should be purchased (gi0 0 ¼ di0 0 ¼ 1),
which, since sales of intermediates are not allowed, leads to the
production of one or more nal products. If we are interested in
determining the strategy that is more competitive against
existing technologies today, then we use the maximization of
prot (eqn (13)) as the objective function to formulate the
model,M23: max {Z3: eqn (6), (7) and (9); gi0 0 ¼ di0 0 ¼ 1; gi¼ 0, di¼
M if IF H i s i00; ui ¼ 0, ci ˛ IP}.

Note that since the production cost of biofuels is typically
higher than the market prices of fossil-based fuels, the prot
will be negative, which means that the identied strategy is the
one that is closer to becoming competitive.

5.1.3 Question 3: optimal strategy for a given feedstock and
product. This question arises when there are multiple strategies
to convert a specic feedstock, i0 0 ˛ IF, to a specic product, i0 ˛
IP. To address this question, we set the availabilities of all other
feedstocks to 0, and require the production of one unit of
product i0. If our goal is to nd that strategy that requires the
least amount of energy inputs (besides biomass), we use model
M32: min {Z2: eqn (6)–(9); ui0 ¼ 1;ui¼ 0 if IPH is i0; gi¼ 0,ci˛
IF; di0 0 ¼ M; di ¼ 0 if IF H i s i0 0}.

Note that since the objective is the minimization of energy
use, exactly 1 unit of fuel i0 will be produced at the optimal
solution, which means that the optimal objective function
value, Z*2, is equal to the energy required to produce one unit
of fuel i0, or, equivalently, the efficiency of the optimal strategy
is 4i’/Z

*
2.

5.2 Identication of alternative strategies

Given the high uncertainty in the eld, it is important to be able
to (i) identify alternative strategies, and (ii) evaluate how
changes in production costs affect the selection of the optimal
strategy. Towards the rst aim, we develop a mixed-integer
programming (MIP) model that can be used iteratively to
1100 | Energy Environ. Sci., 2013, 6, 1093–1104
identify the best K strategies. Towards the second aim, we
generate production cost intervals for the alternative strategies
using the uncertainty levels discussed in Section 3.

To formulate the MIP model, we rst introduce binary vari-
able Yj and replace eqn (7) with,

Xj # bjYj, cj (7*)

Eqn (7*) essentially activates binary Yj when technology j is
utilized at the optimal solution; i.e., Yj ¼ 1 if Xj > 0. Also, we
introduce eqn (13)

X
j˛J l

Yj #
��J l

��� 1; l ¼ 0; 1; :::; k � 1 (13)

where Jl is the set of technologies selected in iteration l; J0 is the
set of technologies selected using LP model Mqc (iteration 0).
Eqn (13) for l ¼ 0 cuts off any strategy that employs the tech-
nologies employed in the optimal strategy identied by Mqc. At
iteration k > 1, we solve model Mk

qc, which consists of eqn (6),
(7*), (8), (9) and (13) to identify the next best strategy. In general,
the inequalities in eqn (13), which are termed as integer cuts,
prevent model Mk

qc from nding strategies that were previously
found or strategies that include the technologies in a previously
found strategy as a subset of Jk. Different types of cuts can be
used if it is allowed to have Jl 3 Jk for some l < k.

The procedure for the identication of K alternative strate-
gies, aer we solve Mqc once to obtain J0, is as follows:

0. Choose K; set k ¼ 1;
1. Solve Mk

qc; obtain Jk; i.e., the kth alternative strategy;
2. If k < K, set k ¼ k + 1 and go to 1.
5.3 Strategy analysis

Aer we identify a set of alternatives, we can perform cost
contribution and sensitivity analyses on the results. For the
minimum cost problem with ui0 ¼ 1, the objective function
essentially gives the total production cost (TPC). By breaking
down TPC into individual contributors (e.g., feedstock and
technologies), we can identify the major cost drivers. Also, we
can carry out a sensitivity analysis on the major parameters to
understand the effects of their variations on the objective
function value.

Furthermore, based on the technology uncertainty levels
discussed in Section 3.3, we can determine an interval for the
total production cost, TPCk, of strategy k,

TPCk ˛

2
64

P
i˛IF

liP
k
i þ

P
j˛Jk

�
1� xj

�
rjX

k
j

Sk
iðkÞ

;

P
i˛IF

liP
k
i þ

P
j˛Jk

�
1þ xj

�
rjX

k
j

Sk
iðkÞ

3
75

(14)

where Jk is the subset of technologies included in strategy k (i.e.,
the strategy identied at iteration k by model Mk

qc); xj ˛ {10%,
30%, 50%} is the cost uncertainty of technology j; Pki and Xk

j are
the values of variables Pi and Xj in the optimal solution of model
Mk

qc (or modelMqc for k¼ 0); and Ski(k) is the value of variable Si(k)
in the optimal solution ofMk

qc, where i(k) is the primary product
of strategy k.
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5.4 Sensitivity analysis

The focus of this paper is on the development of a framework
for the study of conversion strategies. While our framework
allows us to study how technological uncertainty impacts the
economics of the most promising strategies, there are a number
of other factors that play a key role in the development and
adoption of biofuel strategies, most notably, constraints origi-
nating from the cultivation of biomass, the existing trans-
portation fuel infrastructure, and the market of fuels (and
chemicals). One way to study the effect of these factors is
through sensitivity analysis. For example, we can calculate how
the total production cost of a set of strategies changes as the
price of feedstock changes and determine the threshold values
at which the optimal strategy changes. Similar analyses can be
performed for other parameters, such as the price of by-prod-
ucts, which impacts the economics of a strategy through the by-
product credit.
6 Case study: ethanol production from
hard woody biomass
6.1 Model and assumptions

We use the production of ethanol from hard woody biomass to
illustrate the types of analyses that can be performed using the
proposed framework. Our goal in this case study is to identify
the most cost-effective strategy. Fig. 8 shows the corresponding
superstructure which includes biochemical and thermochem-
ical conversion strategies. For the baseline, we assume that the
prices of hard wood, acetic acid, and electricity are $110.7 per
dry ton,21 $0.882 per kg21 and $0.065 per kW h,22 respectively; all
technical and economic parameters are provided in Table S13 of
the ESI.†
6.2 Results

6.2.1 Strategy identication. The optimal strategy (S1) is
the production of ethanol from methanol synthesis via indirect
gasication followed by acetic acid production and hydroge-
nation at $3.50 per gallon of ethanol. Strategy S1 and the top
four alternative strategies are given in Table 4. We observe that
the TPC of the directly heated gasication strategy (S2) is
slightly higher than the indirectly heated gasication strategy
(S1) despite its higher ethanol throughput. In gasication-based
strategies, CO and H2 are used to synthesize acetic acid and
ethanol, respectively, and their costs account for a major frac-
tion of the operating cost.21 Our results show that the high
Fig. 8 Superstructure for ethanol production from hard woody biomass (abbrevia
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consumptions of CO and H2 lead to a higher operating cost for
S2, as well as that the need for a pressurized gasier and an air
separation plant for oxygen supply results in a high capital cost
for S2. The detailed characteristics of the two congurations
were compared in a previous study.21

Although gasication-based strategies (S1 and S2) have
higher capital and operating costs, their TPCs are lower than the
fermentation-based strategies (S3, S4 and S5) because their
ethanol yields are higher by two to four times as shown in Table
4. Furthermore, the by-product of gasication-based strategies,
acetic acid, leads to a lower TPC, because it can be sold at a high
price.21 The credit from acetic acid sales reduces the TPC by
24.6%, which is signicantly higher than the credit from excess
electricity sales in the fermentation-based strategies (5.8–7.3%).
Finally, dilute acid pretreatment appears to be more effective
than other pretreatment technologies due to its higher yield.
Our ndings in terms of yields and costs are similar to a
previous study22 although a different biomass feedstock was
considered.

6.2.2 Cost contribution analysis. Fig. 9 shows the cost
contributions of each technology as well as the feedstock cost
and the by-product credit to the TPC of each strategy. For the
gasication-based strategies, the major cost driver is the acetic
acid production system, followed by the hydrogenation system
and feedstock cost, whereas for the fermentation-based strate-
gies, the largest contributor is the feedstock cost, followed by
the simultaneous saccharication and fermentation systems.
This means that the economics of the gasication-based strat-
egies can be improved primarily through processing modica-
tions (e.g., cheaper catalyst), while lower feedstock prices can
lead to lower TCP for the fermentation-based strategies.

6.2.3 Production cost uncertainty. We estimate intervals
for the TPC of the selected strategies using eqn (14), as shown in
Fig. 10. Combining the uncertainties of the technologies of a
strategy, we calculate that gasication-based strategies have an
overall uncertainty between 32 and 33%, while fermentation-
based strategies have a 22–24% uncertainty. The main reason
for this difference is that the former are more complex than the
latter.

6.2.4 Sensitivity analysis. In addition to conversion effi-
ciency, market considerations, at both ends of our superstruc-
ture, play a key role in the adoption of biofuels. Specically, if a
feedstock were to be used for mass biofuel production, then its
price would be expected to increase. On the other end, if a
chemical is a by-product in a widely employed strategy, then its
price would be expected to decrease, which would in turn make
tions given in Fig. 3).

Energy Environ. Sci., 2013, 6, 1093–1104 | 1101



Table 4 Alternative strategies for ethanol production; TCC: total capital cost, TOC: total operating cost, TPC: total production cost; calculations based on processing
2000 dry tons of aspen wood per daya

Product
(gal/h)

By-product
(/gal ethanol)

TCC
(M$)

TOC
(M$/year)

TPC
($/gal)

S1 Hard wood/H&C/ ID gasication/
SR-RS / SYN-M / SYN-AA / HYDRO

11 225 Acetic acid (1.29 kg) 567 261 3.50

S2 Hard wood / H&C / D gasication /
SR-RS / SYN-M / SYN-AA / HYDRO

15 860 Acetic acid (1.29 kg) 644 449 3.70

S3 Hard wood / DA pretreatment / SSF
/ distillation-E

5425 Electricity (3.40 kW h) 372 94 4.38

S4 Hard wood/ AFEX pretreatment/ SSF
/ distillation-E

4554 Electricity (5.11 kW h) 271 84 4.66

S5 Hard wood / HW pretreatment / SSF
/ distillation-E

3840 Electricity (5.40 kW h) 329 81 5.64

a Abbreviations given in Fig. 3.

Fig. 9 Cost contributions in alternative strategies; abbreviations given in Fig. 3.
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the specic strategy less attractive. To study these effects, we
carry out sensitivity analyses for the hard woody biomass price
and the price of the acetic acid, which is a by-product of the
gasication process.

The TPC of fermentation-based strategies is sensitive
to variations in the feedstock price as shown in Fig. 11a.
Fig. 10 TPC intervals for the selected strategies.

1102 | Energy Environ. Sci., 2013, 6, 1093–1104
When the feedstock price decreases, the TPC of the fermen-
tation-based strategies decreases rapidly compared to the
gasication-based strategies. At prices below $18 per dry ton,
S4 becomes the most cost-effective strategy, while ethanol
production through S2 is expected to have the least cost at
prices higher than $160 per dry ton. Sensitivity analysis
results with respect to the acetic acid price for the gasication-
based strategies are shown in Fig. 11b. A 36% increase in
the price ($1.2 per kg) decreases the TPC by 11.1–11.4%
(3.11 $ per gal and 3.28 $ per gal for S1 and S2, respectively).
On the other hand, when the acetic acid price is less than
$0.15/kg, S3 leads to a lower TPC than that of gasication-
based strategies.
Fig. 11 Sensitivity analyses with respect to (a) feedstock and (b) acetic acid
prices.
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It is important to note that while sensitivity analysis is
useful, it does not fully capture the relationship between the
optimization decisions (adoption of strategy and corresponding
feedstock consumption) and the variability of the parameter
(feedstock price). Specically, it does not account for the
endogenously generated price change. A rigorous treatment of
this subject would require the modeling of this interaction, but
this is beyond the scope of this conversion-centric framework.

7 Conclusions

We developed a framework for the systematic assessment of
biomass-to-fuel conversion strategies. Our framework is based
on a superstructure of technologies that have been reported in
the literature as well as technologies that can be developed in
the future. Based on this superstructure, we developed two types
of optimization models that allow us to: (i) generate novel
strategies combining technologies that were previously thought
to belong in parallel production systems; (ii) assess strategies
based on a range of criteria; (iii) identify a set of promising
alternative strategies; and (iv) perform sensitivity analysis
studies with respect to external (e.g., feedstock process) and
internal (e.g., technology maturity) parameters. These models
can be used to examine a wide range of questions.

Our framework establishes a methodology and suite of tools
for the systematic comparison of competing strategies, the
identication of technology gaps and cost drivers in existing
strategies as well as synergies between distinct strategies. It also
enables us to study trade-offs and assess the impact of tech-
nology uncertainty. We hope that researchers in the eld of
biofuels will not only use our framework to explore new strat-
egies, but also help us enrich it with emerging conversion
technologies and improve it with more accurate data where
appropriate. We are currently developing a soware tool that
will allow users with no optimization background to use it
effectively. Also, building upon this work, we will extend our
framework to study combinations of feedstocks and/or combi-
nations of nal products, include life cycle assessment (LCA)
methods,59 study the effect of biomass supply chain as well as
market constraints, and employ more rigorous approaches to
study the impact of uncertainty.

Nomenclature
Parameter evaluation
a

This journal
scaling exponent for technology capacity adjustment

3
 time-value adjustment factor

Cn
 capital cost of new technology

Cp
 adjusted capital cost of existing technology

Cpo
 capital cost of baseline design

n
 lifetime of plant

Q
 adjusted capacity of existing technology

Qo
 capacity of baseline design

r
 interest rate

Rn
 amount of reactant in new technology

Rp
 amount of reactant in existing technology

ACC
 amortized capital cost [$ per year]
is ª The Royal Society of Chemistry 2013
APR
 annual production rate [kg per year]

CCF
 capital charge factor

TCC
 total capital cost of technology [$]

TOC
 total operating cost of technology [$ per year]

UPC
 unit production cost of technology [$ per kg]

TPC
 total production cost for a strategy [$ per kg].
Mathematical programming model

Sets.
i ˛ I
 compounds

j ˛ J
 technologies.
Subsets.
IF/II/IP/IB
 feedstocks/intermediates/nal products/by-products

J+i /J

�
i
 technologies producing/consuming compound i
Jl/Jk
 technologies included in the strategy identied in
iteration l/k.
Parameters.
bj
 maximum capacity for technology j

gi
 minimum purchase of feedstock i ˛ IF
di
 availability of feedstock i ˛ IF
hij
 yield of compound i in technology j

li
 price of compound i

xj
 cost uncertainty of technology j

rj
 unit production cost of technology j

yj
 unit energy requirement level of technology j

4i
 heating value of compound i

ui
 demand for product i ˛ IP.
Binary variables.
Yj
 ¼ 1, if technology j is selected.
Continuous (non-negative) variables.
Pi
 amount of compound i ˛ IF purchased

Si
 amount of compound i ˛ IPWIB sold

Xj
 production level of technology j.
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